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The composition of the liquid electrolyte is a key factor in
lifetime performance of lithium-ion batteries. The selection and
quantification of additives to the electrolyte is an active field of
research. This study focuses on finding the optimal additive
combination of fluoroethylene carbonate (FEC) and vinylene
carbonate (VC) for NMC622-Graphite cells. The central goal of
this work is to accelerate the experimental search in a large
search area by using a Bayesian-optimization algorithm to
guide the search. Different measurements are used as target

Introduction

The design of Lithium-lon Battery (LIB) is constantly improving
with regards to energy density and longevity. One lever for the
improvement of LIB with liquid electrolytes is the use of
additives in the electrolyte. Additives have been a key focus of
the cell improvements in past years."™ Additives influence the
initial solid electrolyte interphase (SEI) formation.” For high
surface graphite anode materials, reducing the lithium inven-
tory loss during formation increases the energy density.” Over
the lifetime, additives stabilize the SElI under operating
conditions, prevent further reaction of the electrolyte with the
anode material,”® and can suppress transition metal cross-talk.”!
Continuous formation and reformation of SEl is a key ageing
process of LIB, driving loss of lithium inventory and increase of
the internal resistance."” Additives have also extended the
duration of cycle life before complete loss of capacity due to
rollover.” The additives vinylene carbonate (VC) and fluoro-
ethylene carbonate (FEC) are among the most commonly used
ones. Both are reported to contribute to the formation of CO,
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variable such as open-circuit voltage gradient and coulombic
efficiency. Consequentially, the capability of these measure-
ments for accelerated lifetime prediction compared to conven-
tional ageing tests by cycling is investigated. The search
gathered and confirmed additive combinations with excellent
performance after four iterations with a total of 15 additive
combinations analyzed. The results of this study give insights
into the interaction of VC and FEC with regard to ageing.

(carbon dioxide) which reacts to Li,CO; (lithium carbonate), a
key component of the SEL®'" VC is an established additive in
the industry known to be extending cycle life of graphite based
anodes.? Burns et al. studied the impact of different amounts
of VC, showing that increasing the VC concentration increased
cycle life. This was explained by the consumption of VC rather
than other electrolyte components such as EC during forma-
tion, leaving EC for consumption during cycle life"® It was
reported that past a threshold of 4 weight-% (wt%) of VC
concentration, the charge transfer resistance increased, reduc-
ing the cell performance at higher C-rates.”? VC is also reported
to increase irreversible capacity loss during formation and to
decrease of coulombic efficiency (CE)™¥ leading to the
conclusion that the VC concentration should not be too high.
This leaves the question: What is the optimal quantity of VC?

Using FEC as an additive has proven to extend cycle life for
silicon composed anodes. Intan et al."™ showed that adding
FEC to the electrolyte leads to a thinner and more flexible SEI.
FEC also showed positive effects on cycle life of cells with pure
graphite anodes, especially at higher temperatures.'®'” Besides
the formation of lithium carbonates, FEC also leads to the
formation of LiF (lithium fluoride),"® which is highly desirable
for creating a stable SEL'” Burns etal. showed that a
combination of VC and FEC can outperform cells which only
used one of the two additives with regard to cycle life.”) The
idea that both additives interact during formation is supported
by the findings of Michan et al."*" showing that both additives
lead to formation of the same SEI components but in different
concentrations. Zhang et al.” points out that there is a possible
reaction path from FEC to VC, which makes the interaction of
the two additives even more complex.

Considering the results of previous works, we assumed that
there is an optimal combination of VC and FEC. Maximum
concentrations of additives are indicated in the literature
between 5 wt%!" and 10 wt%.””? Beyond 10 wt%, they are

© 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

85U8017 SUOWWOD BAIERID 3(dedldde ayy Aq pausenob afe saoie YO ‘s JOse|n. 1oy Akl 8Ul|UO /8|1 UO (SUONIPUOO-PUB-SWBH 00" A3 1M ARIq 1 Ul |UO//STIY) SUOIIPUOD PUe SWB | 8U188S *[£202/€0/€0] U0 Areiq1T 8UluO A8 ]I ‘18D YoIeassy HOWS Yol wniuezsBunyasiod Aq 860002202 11ea/Z00T 0T/10p/wod A8 | im kg jpuluo'ado.ne-Ansiwsyo//sdny wo.y papeojumod ‘L ‘g0z ‘S2299952


http://orcid.org/0000-0002-7819-3223
http://orcid.org/0000-0002-3220-1910
http://orcid.org/0000-0002-8606-3277
http://orcid.org/0000-0002-6621-7419
http://orcid.org/0000-0002-5622-3591
https://doi.org/10.1002/batt.202200038
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbatt.202200038&domain=pdf&date_stamp=2022-03-29

Chemistry
Europe

European Chemical
Societies Publishing

Research Article

Batteries & Supercaps doi.org/10.1002/batt.202200038

considered part of the base electrolyte. For concentrations
from 0 to 10 wt%, the search space for optimal combination of
both electrolytes is very large. Considering 0.05 wt% as smallest
increment in concentration that we could have achieved, the
number of possible combinations is: n=200?=40,000. Of
course this is hypothetical figure, but it illustrates the size of
the search space. In order to investigate such wast search
spaces systematically, Bayesian optimization has been proven
helpful. It is especially suitable in a multivariable search space,
where the correlation between input and output variable is
unknown.” In comparison to classical design of experiment
Bayesian optimization uses a Gaussian Process (GP) rather than
a linear function to describe the correlation between the
parameters of the search space and the target variable.
Guidance in the selection of experiments is especially impor-
tant when the experiments, as in this case, are costly and time
intensive. So it must be ensured that single experiments either
contribute to exploration: testing areas where the knowledge is
small, or exploitation: improving a known good result. Bayesian
optimization is already very present in the field of chemical
engineering.?**! Recently, algorithm guided optimization of
experiments has been applied to battery electrolyte research.
Whitacre et al.”® presented a guided search for different
additive combinations to improve the electrolyte conductivity.
From the same group, Dave et al.””! presented an experimental
series to improve the electrochemical stability window of
electrolytes through selected additives. In both cases the
electrolytes were mixed in a fully automated setup and
automatically evaluated ex-situ. The results were processed
with a framework for Bayesian optimization, guiding the search
towards unknown optimal solutions while considerably reduc-
ing the experimental effort.

In contrast, this publication aimed at evaluating the electro-
lytes in-situ, in an operational pouch cell, which didn’t allow a
fully automated setup. The usage of an algorithms to guide the
experimental search required quantitative inputs and outputs
of the experiment. While the inputs were simply the two
additive concentrations, the quantitative outputs were more
difficult to choose. Three methods have been used in the past
to evaluate the performance of electrolytes in LIB: the discharge
capacity during cyclic ageing,"” the CE measured with high-
precision coulombmetry (HPCQ)® and the voltage gradient
through open-circuit voltage (OCV) tracking.” The three
methods can be performed in very different time ranges and
do not have the same significance. Cyclic ageing takes several
months, but is the most significant experiment as it relates
directly to application of LIB. The investigation of the CE takes
one to two weeks. Burns et al.”! showed that it allows to predict
longterm ageing behaviour. While it is undoubted that the CE
is related to parasitic reactions driving the ageing of LIB,*" its
role as an universal predictor of the ageing performance is not
clear.”® The measurement of the voltage gradient takes a few
days up to a week. It requires the least complex equipment and
it is the fastest to perform. That is why it is state of the art as a
post production quality control method for LIB. The interpreta-
tion of the gradient is less clear. Burns et al.”’ found consistent
results between cyclic ageing, CE and a high voltage gradient.
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As the duration of the cell performance evaluation is the
bottleneck in the optimization process, the usage of the fastest
method is desired. We investigated if and to which extend this
is possible. All three evaluation methods have been applied to
the samples made in these experiments. The cycling ageing
was taken as benchmark as it is most relevant for the
application, it was complement by the average discharge
voltage as a proxy value for the cell resistance. This allowed to
compare the different methods and to evaluate which one is
the most suitable for the algorithm used in the optimization.
The experiments were performed in four iterations. The results
of the previous iterations were used to decide on the selected
experiments in the next iterations. A total of 15 additive
combinations were investigated.

Results and Discussion
Selection of experiments

After producing the cells of the first iteration the voltage
gradient was the first available value. As a smaller gradient had
proven to be an indicator for better performance.”” To select
the experiments of the second iteration the algorithm was
trained to minimized the gradient (in absolute value). For this
target variable, Figure 1a displays the expectation calculated by
the GP in a 2D-plot.

For the selection of the experiments of the third iteration
results of the cyclic ageing were available. While the selected
value by the algorithm showed a much smaller voltage
gradient, it didn’t show the expected good cyclic performance.
We concluded that the minimization of the voltage gradient
was not correlating with good cyclic performance, hence it was
not an appropriate indicator for improving the cyclic perform-
ance. Table 1 shows the suggestions after two iterations for
different optimization parameters. The best performing combi-
nation having the highest gradient, except for an outlier, we
selected the experiment proposed with the gradient max-
imization as optimization criteria (Figure 2a). The outlier was
excluded from further training. Additionally the GP was trained
with the relative capacity at 100 cycles (Figure 2f). The experi-
ment proposed for the CE maximization as an optimization
criteria was discarded for being to close to the bad performing
10 wt% FEC, 0 wt% VC.

Table 1. Proposed experiments by the optimization algorithm

Training data Opti. Parameter FEC VvC
Iter. n® [wt %] [wt %]
1,2 Volt. Grad. Max. 2.29 747
1,2 Volt. Grad. Min. 1.85 1.09
1,2 CE Max. 9.1 0
1,2 Rel. Cap. @100 Cyc. Max. 1.61 1.97
1-4 Volt. Grad. Max. 10 5.8
1-4 Volt. Grad. Min. 43 9.4
1-4 CE Max. 24 1.8
1-4 Init. Abs. Cap. Max. 2.1 0
1-4 Abs. Cap. @400 Cyc. Max. 2.1 0
1-4 Avg. Dch. Volt. @400 Cyc. Max. 0.1 2.5
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Figure 1. Expectancy of different target variables in the search space, describing the a-piori-knowledge before each of the four proposed experiments. The x-
and y-axis indicate the concentrations of the additives, the color the estimated value of the target variable. The position of the training values are indicated by
blue crosses. The next experiment proposed by the algorithm is indicated by a black cross.

For the fourth iteration the optimization was done with
regard to the absolute capacity rather than the relative as some
experiments showed a strong initial decrease in capacity during
the formation. This was due to high consumption of active
lithium during the formation and in the first cycles, before
stabilizing during further cycling. The combination J-3 was
repeated to confirm the outperforming results. The GP was
retrained a last time after the fourth iteration. The results are
displayed in Table 1. Absolute capacity and average discharge
voltage at 400 cycles were included as training target values for
longterm ageing performance. Considering the low correlation
coefficient between the voltage OCV gradient and the long-
term performance (see Figure 3) the proposed experiments for
minimizing and maximizing the gradient were discarded. The
remaining proposed experiments were in an area that was
already well covered by the previous experiments (see Fig-
ure 1d). At this point the cycling of the two best performing
additive combination of 1.85 wt% FEC, 1.1 wt% VC and 1.0 wt%
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FEC, 1.0 wt% VC had already reached over 1000 cycles and
retained a median capacity of 992 mAh and 1004 mAh,
respectively. We concluded that there was little room for
improvement to be gained with respect to performance and
that the optimization was completed.

Predictive ability of target variables

The delay with which a measurement is available after the
electrolyte filling is the biggest lever in reducing the iteration
time of the optimization. We analysed the capability to predict
the final cell performance of five measurements available
within 25 days after the electrolyte filling. Figure 3 shows the
correlation between the measurements and the longterm
performance indicators. The indicated correlation coefficient r
is a Spearman’s rank correlation coefficient, it was chosen as it
is more robust with regard to outliers. In order to identify
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Figure 2. Plot of the of the investigated parameters in chronological order for each electrolyte sorted by iteration. All measurements were done at 35 °C.
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Figure 3. Correlation between capacity and avg. discharge voltage after 400 cycles and measurements at early life. The measurements are sorted from left to

right in their order of appearance.

potential target variables for future optimization, we added the
initial capacity and the formation capacity. The charged
capacity during formation (Figure 3a) showed a very weak
correlation. The voltage gradient (Figure 3b) and the CE (Fig-
ure 3c) have shown a good prediction capability in previous
publications.” But the correlation between these two early
measurements and the aged capacity at 400 cycles were not as
strong as expected. A similar weak correlation between the
ageing performance and the CE was reported by Weng et al.®”
In our case the initial capacity (Figure 3d) of the cyclic ageing
was the best indicator for the longterm performance. The initial
capacity was measured after the cells performed eleven full
cycles on the HPC, when the capacity loss due to formation
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and post formation was completed. This conclusion was
underlined by the experiments suggested by the algorithm
based on the first four iterations (see Table 1). The next
proposed experiments based on the capacity after 400 cycles
and on the initial capacity were the same. We concluded that
in this case no additional knowledge was gained from
2.5 months of cycling. Hence, in order to increase the speed of
development, the first choice for the target variable is to use
the initial capacity followed by the CE.
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Figure 4. Longterm performance after 400 cycles. Capacity, avg. discharge voltage and rel. capacity sorted by additive combinations.

Performance

The main goal of the selection of electrolyte additives
quantities was to improve the cyclic life. Figure 2 displays the
performance tests sorted by iterations and Figure 4 the long-
term performance at 400 cycles, which was the ageing reached
by the latest iteration. Even if some compositions showed
higher spread or outliers, performance differences between the
different additive compositions were well defined. For the
combination J-4 one cell was destroyed before cycling started,
therefore results for two cells were available. Between the
iterations the performance of the same electrolyte composition,
reproduced for reference purposes, were not exactly identical.
This was especially pronounced for the voltage gradient. It
systematically increased from iteration 2 to 4. The differences
between the iterations could be due to small difference in the
preparation and in the handling of the cells before the ageing
experiment. But within the same iteration the performance
differences were consistent.

The two additive combinations D and J outperformed the
other combinations in longterm performance throughout two,
respectively, three repetitions. Generally, we observed that
smaller quantities of additives lead to higher initial capacity,
smaller over potentials, and better longterm performance. All
combinations with more than 1000 mAh of remaining capacity
had less than 5wt% of each additive, except for the cells
without additives. The cells with higher wt % of additives had a
higher initial capacity loss or a stronger decrease, leading to a
capacity decline below 1000 mAh before 400 cycles. This was
also reflected in the experiments selected by the algorithm,
most of it in areas with concentration below 4 wt%. The
minimum for improving performance lied at 1 wt%. The cells
with 0 wt% or 0.5 wt% performed below the top performing
combinations.

To better understand the effect of VC and FEC we evaluated
the average discharge voltage of one cycle vs. the discharge
voltage of this cycle for the cells with 1 wt% of only one of the
two additives, displayed in Figure 5. The difference between
the electrolytes was significant. The cells filled with VC had a
higher avg. discharge voltage for the same capacity than cells

Batteries & Supercaps 2022, 5, e202200038 (5 of 9)
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Figure 5. Comparison of the avg. discharge voltage and the capacity for
small additive quantities in the 4. iteration., for the first 400 cycles. Each
point is a cycle.

filled with FEC, meaning that the cell with VC had smaller over
potentials, hence a smaller impedance compared to the cells
filled with FEC. This confirms previous results'? and is
consistent with the EIS measurements of Burns et al.”” where
the half circle is smaller for VC compared to FEC. This was not
true for higher concentrations of VC (see Figure 4). The additive
combinations with 10 wt% VC and a small amount of FEC (C,G)
had systematically higher overpotentials and lower capacity
after 400 cycles than their counterparts with low VC concen-
tration of 1 wt% (O,D). This was also consistent with earlier
findings, which showed an increased over potentials for
concentrations of VC over 4.5 wt%.” The comparison between
low and high concentration for FEC (N,D vs. B,H) showed a
small but much less significant deterioration, from low to high
FEC concentration, in the overpotential and the capacity after
400 cycles than for VC. We concluded that a higher FEC
concentration has no negative impact on the cell performance
while there is a limit for the VC concentration.

The cells prepared in the iterations 1 and 2 had reached
over 2000 cycles by the end of the investigation as shown in
Figure 6. We observed that cells with a VC concentration of
10 wt% performed significantly worse than cells with a smaller
VC concentration. All of the cells that experienced a total loss
of capacity by rollover had 10 wt% VC. For the cells with a VC
and a FEC concentration of 10 wt% the early rollover after less
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Figure 6. Discharged capacity over cycles for all investigated LIBs. The cycling was performed at 35°C and cells were symmetrically charged and discharged

with a 0.5 A constant-current between 3-4.35 V.

than 1000 cycles could be caused by the reduced concentration
in conductive salt. The conductive salt was present in the
baseline electrolyte, but it was not increased after the
introduction of the additives. The other cells prepared with
10 wt% VC still experienced rollover or showed a strong
capacity loss while the cells with 10 wt% FEC, with the same
salt concentration, were stable for over 2000 cycles. The cells
with a VC concentration of 6.5 wt%, were also stable even-
though they experienced a strong initial loss. We concluded
that a VC concentration of above 6.5 wt% is harmful for the
longterm stability of the cell. This is consistent with the results
of Yamaguchi et al.”" which observed a deterioration of cell
performance for a VC concentration of above 10 wt%. We could
not verify the trend observed by Burns et al.? which showed an
increase in number of cycles before rollover for an increasing
concentrations of VC up to 6 wt% for a similar system. But our
data did also not reject this observation as only cells with a VC
concentration of 10 wt% experienced a rollover, while all others
cell are still operational.

Many of the prepared cells experienced sharp drops and
sometime consequent rises of the capacity during cycling (see
Figure 6). In Figure 5 the effect of such capacity drop and its
related effect on the cells average discharge voltage, which
also drops. While it is plausible that the average voltage
changes over the ageing due to changing cell balancing,
neither such a sharp drop, nor the fact that in some the
capacity loss was reversible can be explained by normal
degradation. We excluded measurement errors as a source of
this disturbance. Micro-short circuits as cause for the drops
were also excluded, as the capacity loss was reversible. We
concluded that an increase of the overvoltage due to an
increase of the cell impedance was at the origin of the capacity
drop. We found that the only plausible explanation for a strong
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rise in the internal resistance within one cycle was the
decontacting of the electrode sheets, triggered by gassing. As
the cells were not braced during cycling, the gas was able to
expend and evolve through the cell stack.?? This would also
explain the reversibility of the capacity loss. Gas can be created
at the cathode and subsequently reduced at the anode.®*** All
cells showed strong capacity drops and rises had 10 wt% of VC
with different quantities of FEC. Further we observed that after
the rollover, the cells filled with 10 wt% FEC and 10 wt% VC
inflated due to gassing. We concluded without further proof,
that the gassing was linked to the high VC content.

Conclusion

This work aimed at determining the optimal combination of
the electrolyte additives VC and FEC for a NMC/graphite
chemistry to improve cycle life. The iterative search for the
optimal combination was guided by a GP. Within three
iterations two optimal combinations could be determined and
their performance was confirmed in a fourth iteration. We
showed that a search for an optimal combination of both
additives is not trivial. Using a GP to guide the search helped
accelerate the search and allowed to select the combination of
1.85 wt% FEC and 1.1 wt% VC, which otherwise would not have
been found. The evaluation of the target variables led to the
conclusion that the initial capacity was the estimator with the
best predictive ability for the longterm performance. While it
was not used for the optimization in this work, it should be
retained for future works. We observed that additive quantities
below 5wt% of each additive performed better than above
5 wt%. Hence, when optimizing a combination of VC and FEC
the search should focus on this smaller search space. The
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investigation showed that VC helps to reduce initial capacity
loss and overvoltage increase while FEC improves longterm
stability. We also found that the concentration of VC should be
limited due to its negative impact on longterm stability and
gassing behaviour. At the same time, an increased FEC
concentration had on the one hand no drawbacks but on the
other hand did not further improve the performance. Hence,
the amount of used additive could be reduced, which might
contribute to reduce costs. The optimization under the
constrain of minimizing the used additive quantity could be a
starting point for future work. The presented results are a fine
tuning for a very specific test scenario. Future work could
diversify the test conditions and perform application specific
tests, the results of which could be processed in a multi-
objective optimization. By this means a purpose design of the
additives could be achieved. In general, the presented method
could be applied to other cell design parameters known or
suspected to affect the lifetime performance. The experimental
results could be improved by formalizing or automatizing the
sample preparation and the testing process. This would further
accelerate the process and increase reproducibility. Finally, an
application of parameter selection with Bayesian optimization
to an industrial battery production line seems possible and of
great interest.

Experimental Section

Preparation of electrolyte solutions

All investigated electrolytes consist of 1.0 M lithium hexafluoropho-
phate (LiPF6) dissolved in a mixture of ethylene carbonate (EC) and
dimethyl carbonate (DMC), (1:1, v:v) as baseline, and in mixtures
with electrolyte additives of FEC and VC by weight. All electrolyte
components were obtained from Solvionic and used without
further purification. High quality and battery grade baseline (99.9%
purity), FEC (99.9%), and VC (99.9%). The electrolyte mixtures were
prepared and stored inside an argon-filled glove box (O, and H,0
#<0.5 ppm). Three cells were prepared for each electrolyte
sample.

Pouch cell design

1 Ah sealed and dry machine wound pouch cells were obtained
from Li Fun Technology Co., Ltd. The ratio of the first lithiation
capacity of the negative electrode and first delithiation capacity of
the positive electrode of the pouch cells was 1.19 (i.e., N/P,
negative/positive). This configuration ensured that no lithium
plating would occur at the highest upper cut-off voltage UCV of
4.35 V. The composition of the negative electrode is 94.8% artificial
graphite, 1.4% conductive carbon, and 3.8% binder. The positive
electrode is 94.0% NMC622, 4.0% conductive carbon, and 2.0%
binder. Investigations with an scanning electron microscope (SEM)
showed that the particles of the positive electrode were composed
of single crystals, similar to the material presented in.

Electrolyte filling, formation, and cycling protocols

The pouch cells were first opened inside an argon-filled glove box
(LABstar, MBRAUN) with an proper inert atmosphere (O, and H,0
<0.5 ppm), followed by drying at 80°C for at least 12 hours.
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Thereafter, the pouch cells were filled (by weight) with the
electrolyte mixtures. For this doing, the cells were placed on a high
precision scale (MSA3203P-100 DU, Sartorius AG) and were filled
with 4.5 g of electrolyte solution. To accelerate and guarantee
proper wetting of the active materials and separator with electro-
lyte solution and thereby removing residual gases out of the pores,
the electrolyte injected pouch cells were transferred to an airlock.
Here, a negative pressure of —0.6 atm was applied for 20 seconds.
Afterwards the pouch cells were vacuum-sealed with a vacuum
sealing machine (MSK-115A, MTI KJ Group).

For the formation, pouch cells were clamped between two metal
plates and a pressure of 0.8 MPa was applied by four screws with
special attention not to short circuit the cells. The clamped pouch
cells were placed in an oven at 80°C (UFE 500, Memmert GmbH +
Co. KQG). After a resting time of 8 hours at OCV, which ensures a
complete wetting of the active materials and separator by the
electrolyte solution of the pouch cells, the protocol of the
formation was as follows: pouch cells were charged once with a
constant current of 0.2 C to 4.35V UCV without constant voltage
phase and discharged with constant current of 0.2C to 3.9V.
Thereafter, the pouch cells were taken back to an argon-filled glove
box, in which they were opened and resealed under vacuum in
order to remove any gas formed during the formation step.

Testing methods

The electrical tests after the formation were performed in an oven
(UFE 500, Memmert GmbH + Co. KG) at 35°C. After the formation,
the cells underwent successively three testing methods. First the
OCV was measured for 3 to 10 days. The voltage was automatically
measured every 2 hours. In between the measurements, the cells
were electrically disconnected from the measurement device by a
relay, in order to insure no discharge through the measurement
circuit was possible. The time gradient of the voltage was
calculated from the voltage time series. The voltage gradient values
were used in the following to evaluate the cells performance.

It followed a HPC measurement using a Novonix UHPC 2 A. The
pouch cells were cycled in the potential range of 4.35-3 V with a C-
Rate of C/20, for 11 to 13 Cycles. To avoid the low CE due to post
formation in the first cycles, the cell performance was evaluated
from the average coulombic efficiency of cycles 4 to 11. After the
cycling for HPC the cells were stored again for 5 to 10 days at 35°C
and 3.0 V before the cyclic ageing was started.

The pouch cells were cycled in the full potential rang of 4.35-3V
with a constant current charge and constant-current discharge
protocol using a Neware BTS (CT-ZWJ-4S-1-1U). Cells were sym-
metrically charged and discharged with a 0.5 A (~0.5 C) constant-
current. No resting time and no constant-voltage phase were
applied. The cells were cycled without pressure. Absolute capacity
and capacity relative to the first cycle at cycle 100 and at cycle 400
were used to to evaluate the performance. For each discharge
cycle the average voltage was calculated. The average was
calculated with regard to time, which was equivalent to electric
charge at constant current.

Selection of experiments and optimization

To enhance the search for the optimal additive composition
bayesian optimization or kriging was used to select the experi-
ments. As a functional connection between the concentrations of
the additives x = (cgc,¢yc)” and the ageing performance is
unknown, bayesian optimization substitutes the connection by a
GP. A GP can be described as a distribution of functions connecting
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the input variables and the output variable of the experiment, it is
written as:

f(x) ~ GP(m(x), k(x,x")) 1

With the mean function m(x) being the first moment E[f(x)] and
the covariance function «(x,x’) being the second moment
E[(f(x) — m(x))(f(x') — m(x'))]. In this case, the GP was used with a
zero mean function leaving the covariance function for regression.
The covariance functions describes the smoothness of the target
variable. The covariance function (or kernel) Matérn 5/2 was chosen
according to the recommendation by Snoek et al.*>¥ Snoek favored
the Matérn kernel over the common choice of the squared
exponential kernel for it has less strict smoothness. The GP was
trained with tuples of VC and FEC concentrations (0-10 wt%) as
input or predictor variables and one of the measurement results
(voltage gradient, CE and absolute or relative capacity at cycle 100)
was used as dependent or target variable. All values were
normalized to values between 0 and 1. The mean of the measure-
ment values of each concentration tuple was taken as target
variable in the training while the variance of the measurement
values was added as noise to the covariance.

With the GP trained by the a-priori-knowledge of the previous
experiments the next experiments could be chosen to maximize
the target value (exploitation) or to minimize the unknown
(exploration). For this end, three algorithms could be used: the
upper confidence bounds method (UCB), the expected improve-
ment method (El), or the probability improvement criterion (POI).
POl was dismissed due to its slower convergence.***” UCB allowed
to guide the suggestion through a parameter, either in direction of
improvement or in direction of exploration. This would have
required further tuning of the parameter so El was chosen, as it
was the best compromise between improvement and exploration.
The suggestion had a random character, as it often the case with
algorithmic search, leading to changing results when the algorithm
was run a few times in a row. To cope with fluctuating results, the
execution of the selection algorithm was repeated 100 times. In all
cases over 70 out of 100 results were the same tuple, which was
then selected. The complete algorithm is presented by Snoek
etal®™ For this publication it was used in its python
implementation.*®

To create and increase the prior knowledge used to train the GP,
the search was done in four iterations. Each iteration composed of

Table 2. Selected additive combinations for experiment. Experiment with
reference or exploration as motivation were human selected, all other
experiments were selected by the algorithm.

Iteration  FEC vC Motivation ID
n° wt%]  [wt%]

1 10 10 Exploration Al
1 10 0 Exploration B1
1 0 10 Exploration @]
1 1 1 Exploration D1
2 5 5 Exploration E2
2 0 0 Exploration F2
2 1 10 Exploration G2
2 10 1 Exploration H2
2 0 10 Reference (Outlier) c2
2 25 6.5 Minimizing OCV Gradient 12
3 1.85 1.1 Maximizing OCV Gradient J3
3 1 1 Reference (Best Iter. 1) D3
3 0.5 0.5 Exploration K3
3 10 10 Reference (Worst) A3
3 1.6 2 Maximizing rel. cap. at 100 cycles L3
4 36 1.1 Maximizing abs. cap. at 100 cycles M4
4 1 1 Reference (Best Iter. 1) D4
4 1 0 Exploration N4
4 0 1 Exploration 04
4 1.85 1.1 Reference (Best lter. 3) J4

three to five additive combinations, called experiments, listed in
Table 2. The experiments of the first iteration allowed to explore
and delimit the search space, hence additive concentrations at the
edges were selected. In the following iterations were prepared:
reference experiments to insure reproducibility, human selected
exploration experiments and machine selected experiments. The
combination of machine selected and human selected experiments
has also recently been discussed by Wang et al.””’ Before each
experiment selection the GP was retrained with the results of all
previous iterations, leading to an effect of reinforced learning. As
displayed in Figure 7, the knowledge about the search space grows
through a combination of human and machine selected experi-
ments. The knowledge in the GP can visualized for a two
dimensional search space by plotting the expectation (see Figure 1)
and its confidence interval (see Figure A1 in Supporting Informa-
tion).

Duration: Duration:
2-3 Days >30 Days
Human selected Electrolyte
experiments Mixing Pouch

& Cell

Cell .
I Prepar Testing

Selection =
GP ™ Algorithm | ation >

| S—

Test results of previous iteration are
used for GP training

Figure 7. Flowchart describing the experimentation process. The executed experiments are a combination of human selected and machine selected ones.
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